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Motivation: Extending Operational Range of  
Atmospheric Optical Systems 
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Long-range  

(100km-400km) 
Low-elevation  

(elevation angles <30 deg.) 

 Directed energy 

 Remote sensing    

 Active and passive imaging  

 Target tracking 

 Target designation  

 Laser communication 

 Space surveillance 

 Space debris tracking 

Applications:  

Atmospheric turbulence theory outlines  

 The atmospheric turbulence theory [Kolmogorov] was developed in 1940’s -1960’s.  

 It is based on assumption of locally stationary and isotropic turbulence with homogeneous 

statistics and is applicable to relatively short propagation paths close to the ground.  

 With these assumptions the major characteristics of turbulence are functions of only three 

parameters: the structure constant Cn
2, inner scale l0, and outer scale L0. 

 Most early experiments were performed over flat, uniform ground from tens of meters to several km 

with a height above ground of several meters.  

 The first long-range experiments demonstrated inconsistency of obtained results and theory. 

Motivation 

Research focus: To develop the theoretical foundation for the physics of atmospheric optics 

effects over extended-range propagation paths by building bridges between meteorology, 

computational fluid dynamics, and statistical wave optics. 



Physics of Atmospheric Optics Effects: Diversed Challenges 

? 

What is The Atmosphere from optics viewpoint?   

“it is refraction”  

“it is wave- 
optics”  

It is scattering 

what and  
how to measure? 

How to  
model? 

How to  
mitigate? 

Can we predict? 

Let us just use it 



Background: Long-Range Atmospheric Propagation  

COMBAT Experiments 

L = 149 km 

(93 miles) 

Mauna Loa Observatory (part of NOAA) 

Elevation: 3397m (11,140 ft) 

Latitude: 19.54 degrees N 

Longitude: 155.58 degrees W 

  

AMOS Observatory (Haleakala, Maui) 

Elevation: 3058 m 

Latitude: 20.7 degrees N 

Longitude: 156.3 degrees W 

July 2010  

Feb. 2010 



Green beacon footprint at the dome 

of 3.6 m telescope. The picture was 

taken by a tourist visiting Haleakala 

crater and sent to the local 

newspaper The Maui News as an 

evidence of UFO activities 

Background: Long-Range Atmospheric Propagation  

COMBAT Experiments 

Intensity scintillations inside 90 cm receiver aperture observed simultaneously at wavelengths: l=0.53 
mm (left), l=1.06 mm (center), and l=1.55 mm right. Frame rate 200 fr/sec., exposure 5 ms.  



Background: Long-Range Atmospheric Propagation  

COMBAT Experiments 
Power fluctuations of received  beacon light  

Spikes 

 Results demonstrate that assumptions of stationary and isotropic 

turbulence cannot be applied for long-range propagation paths. 

 

 Statistical characteristics of the observed intensity scintillations 

are highly diverse, and dependent on local weather conditions.  

 

 Measured intensity scintillations exceeded by 3x -5x the 

corresponding values obtained using both analytical  results and 

numerical simulations based on Kolmogorov turbulence model.  

 

 In all experiments the intensity scintillation patterns do not show 

coherent (directional) motion but rather random appearance and 

disappearance. These results challenge the assumption of “frozen” 

turbulence (Taylor hypothesis) commonly used in analysis.    

 
 The frequent (0.3 sec – 1.0 sec) appearance of large-amplitude 
spikes in received power indicates the existence of slowly 
changing/moving large scale coherent structures with sharp 
refractive index changes at their boundaries. 
 
 For the three-wavelength beacons, the wavelength dependence 
of the intensity scintillation variance, aperture averaging factor and 
spatial auto-correlation function does not follow existing 
assumptions that the longer the wavelength, the less turbulence 
impact there is on laser beam characteristics. 
 
The existence of numerous well-developed small scale speckles 
makes questionable   efficiency of adaptive optics techniques  
(at least the existing AO). 

Observations, Problems, Impact 



Deep turbulence St 

Atmospheric optics effects sensing and 

predictive modeling: from Kolmogorov 
idealization towards real-world complexity 

 
• Sensing of large-scale coherent atmospheric structures  

• Novel  atmospheric sensing techniques 

• Combined turbulence, refraction, & scattering effects 

• Target-in-the-loop laser beam propagation 

•  Propagation inside atmospheric stratified layers 

Turbulence  
mitigation 
 
Sparse AO 
 
Exotic beams 
 
Controllable 
coherence 
 

Feedback 
Control 
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Image  rotation
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Reference
mirror

Ic( )r 

IFB( )r

Mitigation of 

atmospheric effects: 
foundation for intelligent 
engineering of optical 

waves and systems 

Atmospheric optics 

effects exploitation: 
considering 
complexity as an 

opportunity 

• Super-resolution in volume turbulence 

• Super-focusing in deep turbulence 

• Turbulence-induced  
enhanced correlation 

Building bridges between weather research 

and forecasting, computational fluid 
dynamics and statistical wave-optics 

 MURI  

Approach: From Underlying Physics towards  
Predictive Modeling, Mitigation and Exploitation 



Building Bridges Between Weather Forecasting, Computational 
Fluid Dynamics and Wave Optics: Accomplishments 

Simulated dn/dz @ 650 m above mean 
sea level. Location: Madeira island  

Developed computational 

techniques that integrate refractive 

effects for analysis of optical wave 

propagation over extended 

atmospheric paths.  

The NCSU team collaborated with UD 

and AFIT researchers on quantifying 

the effects of large-scale coherent 

structures (e.g., von Karman vortex 

streets, low-level jets) on ray tracing 

calculations. 

Developed accurate and reliable 

approaches for the estimation of 

Cn2 in deep turbulence.  

The NCSU team has coupled state-

of-the-art mesoscale modeling with a 

(modified) K-41-based optical 

turbulence estimation approach.  

In the near future, several non-

Kolmogorov spectra (e.g., Bolgiano, 

Shur-Lumley) will be utilized for Cn2 

estimation for different atmospheric 

levels.  

In parallel, they are utilizing extensive 

DNS and LES databases to come up 

with simple yet physical Cn2 

estimation approaches.  
Simulated Cn2 @ 500 m above mean 
sea level. Location: Hawaiian islands  

Mesoscale  
simulation 
grid (5 km) 

Large eddy  
simulation 
grid (50m) 

Wave-optics 
simulation 
grid (50mm) 

Ray tracing simulation based on 
meteorological data: Madeira island 

New phenomenon: Optical wave ducting in strongly stratified and inversed atmospheric layers  

Challenges:        ~100-order of magnitude 
mismatch in computational spatial scales 

Optical  
wave 
ducting  



Atmospheric Optics Effects Sensing &  
Predictive Modeling: Accomplishments 

Satellite (AIRS)-derived turbulence  
structure (Cn

2) vertical profile using   
AIRS-derived winds, AIRS Cn

2   
with NWP winds  and  HV 5/7  

Cn
2 from optical scintillometer, weather radar & satellite 

Temporal evolution of refractive 
index structure function (log scale) 
along 7-km path at UD’s optical 
range obtained by processing of 
weather radar data, optical 
scintillometer, and AIRS satellite.   scintillometer  

weather radar 

satellite 

clouds Atmospheric turbulence 

characterization using data 

fusion from different 

sensors: AIRS satellite, 

weather radar and optical 

scintillometers  

Distance, L (km) 

UD atmospheric optical range (7 km) Elevation, h (m) 

UD lab 

VA medical 
center 

Laser  
beacons 

Atmospheric  
sensors 

Dr. S. Fiorino (co-PI) Prof. M. Vorontsov (PI) 



Atmospheric Optics Effects Sensing &  
Predictive Modeling: Accomplishments 

Target-in-the-loop atmospheric turbulence sensing 
based on remote sensing invariants 

The existing line-of-sight sensing of atmospheric turbulence 
characteristics encounters several challenges 

Scintillometer 
transmitter Scintillometer 

receiver 

Proposed target-in-the-loop atmospheric sensing (TILAS) technique 

2

,theory I

n = 10,000 atmospheric realizations 

Wave-optics simulations of TILAS concept.  Scintillation 
index and interference metric variance obtained from TILAS 
received signal measurements vs turbulence strength 

? 

Wave-optics simulation parameters: 
Wavelength λ = 1.064 μm; beam radius W0 = 1.5 cm ; 
distance L = 7 km; retro-reflector diameter dretro = 1 cm 

2( , ) ( , ) const intJ A z z dr r r

Remote-sensing invariant (interference metric) 

The existing theory  
doesn’t work in strong 
turbulence conditions 

Cn
2 = 1x10−14 m−2/3 

… 

New Effect: Turbulence-induced near-target beam super-focusing 

Strong volume (deep) turbulence can result in the near-target laser beam super-focusing phenomenon 
affecting accuracy of intensity scintillation sensing. 

Target 

Spikes 



Exotic Laser Beams Engineering for Atmospheric  
Effects Mitigation: Accomplishments 

Robust to turbulence impact, random beams with controllable far-zone intensity have been introduced 



Exotic Laser Beams Engineering for Atmospheric  
Effects Mitigation: Accomplishments 

Notional schematic of a coherent fiber array  
with optoelectronic feedback control system  
based on beam-tail interference sensors 
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Atmospheric Effects Exploitation: Considering Complexity as  
an Opportunity: Accomplishments 

Turbulence-enhanced correlation of received power-signals in optical links  based on single-mode fiber collimators 

co
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Experimentally observed 99.3% correlation 
between received signals over 7-km distance   

Error-free data transmission  
through  atmospheric channels 
without adaptive optics 

Physics based security via turbulence-synchronized encryption 
code change without any need for code distribution 



Publications, Impact on DoD Capabilities & Education   

     Review Meetings and Collaborations 

• MURI team workshop (Miami, Nov 2013) 

• MURI Overview presentation at AFRL/DE (SOR, Albuquerque, NM  Oct. 2013) 

• MURI Overview presentation at AFRL /AMOS (Kihea, HI, Feb. 2014) 

• Atmospheric Sensing Navy Workshop (San Diego, CA, Feb. 2014) 

• Atmospheric Characterization workshop (MIT/LL, Lexington, MA , Sept. 2013)   

• MURI Overview presentation at ARL/Adelphi, June, 2013 

• MURI overview presentation for NATO SET-165 study group at ONERA, (Paris, May 2014)  

Publications & Conference Presentations (July 2013-July 2014)   58   

Educational Impact: New Graduate Course “Introduction to Atmospheric Optics” 

Electro-Optics Course UD/EOP 695  Spring 2014  

The class was taught by the team of MURI PIs:  
Dr. Mikhail Vorontsov (UD), Dr. Steven Fiorino (AFIT), Dr. Michael Roggemann (MTU), Dr. Olga Korotkova (UM), 
and Dr. David Voelz (NMSU). 

• Fundamentals of atmospheric physics, global and macro optical effects (S. Fiorino & S. Basu) 
• Atmospheric optical turbulence and its impact on imaging systems (M. Roggemann) 
• Laser beams propagation in atmosphere (O. Korotkova) 
• Numerical techniques for atmospheric optical effects analysis and simulations (D. Voelz) 
• Atmospheric effects  mitigation and exploitation  (M. Vorontsov) 
 

Topics/Instructors 
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